Tutorial: Artificial Neural Networks
for Discrete-event Simulation

Peter J. Haas
Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Winter Simulation Conference
December 17, 2024

MACHINE LEARNING & SIMULATION: FRIENDS OR FOES?

Adobe Firefly

Machine Learning: Simulation:

= Mechanistic model of
system logic to produce
predictions and generate
data

= Statistical model to
produce predictions or
generate data

» Leverages large amount

of available data = Incorporates deep domain

expertise (logistics,
engineering, healthcare,
telecom, computer design,

)

Opportunities to achieve the best of both worlds!

= Simulation for ML: E.g., generate training data

= ML for simulation:
— “Classic” ML for simulation (random forests, SVMs, ...)
— Causal probabilistic graphical models for simulation metamodeling
— Artificial Neural Networks (ANNs) for simulation: This tutorial

OUTLINE

= Background on ML and ANNSs
= ANNSs for simulation input modeling

= ANNSs for simulation metamodeling and optimization

= Other applications of ANNs to simulation
— Modeling of agent behavior
— Simulation validation
— Variance reduction

CAVEATS

= This is a tutorial, not a survey or literature review
— It strongly reflects my personal experience

= It is a snapshot from long ago (June 2024) referencing prehistoric times (2019-20)
— ANN technology has been developing VERY fast (1 human year = 50 ML years)

= | will not discuss foundation models (e.g., LLMs) very much
— Will focus on ANNs for stochastic processes (more modest data requirements)

OUTLINE

= Background on ML and ANNSs
= ANNSs for simulation input modeling

= ANNSs for simulation metamodeling and optimization

= Other applications of ANNs to simulation
— Modeling of agent behavior
— Simulation validation
— Variance reduction

PREDICTIVE ML BASICS

= The simplest setup: Learn a function f(x; 8): R% — R given training data 7 = {(x;, y;)}
— Training points are i.i.d. samples from underlying joint probability distribution P(X,Y)
— x; is called a feature vector
— 6 is a vector of function parameters

= The function is trained (fit to data) by minimizing an (approximated) loss function £(6)
—E.g., 2(8) = Ex[(f(X;8) — Y)?] is approximated by |T|71 Y f(x;;0) — v;)?
— This procedure is called empirical risk minimization

= Example: Classical linear regression
—f(x, 6) — 90 + 91x1 + -+ ded
— Under mean-squared loss, 6 = (X'X)~'X'y where ith row of X is (1,x; 1, ..., x; 4)

MULTI-LAYER PERCEPTRON (MLP): REGRESSION ON STEROIDS

Input Hidden Output
= The simplest ANN Layer x Layer h Layer y

Weights and biases

!
h=oc(Wx+b)

o(x) = ReLU(z) = max(0, z)

= Universal approximation theorems: MLP can approximate any continuous function
— With single, wide-enough hidden layer [Hornik ‘91]
— With enough fixed-width hidden layers (overall fewer neurons) [Hanin & Selke “17]

AUTOMATIC DIFFERENTIATION Weights Data
FOR TRAINING MLP 0 = (61,6, 065) (z, 2% y)

* Train via gradient descent to minimize loss Model Loss

o] _] y:91$+92$2+93 L:(é1$+é2332—|—§3—y)2
* Efficiently compute gradients via autodiff

* Advantages: fast & more accurate than
finite difference

» Out-of-box in PyTorch, TensorFlow, Jax * 0

* Break functions into sequence of z? @ @ 0 9 L
elementary operations
« Matrix multiplications, nonlinear
functions, etc.

e Cache intermediate results in forward y
pass that computes loss L

« Use chain rule to compute gradients
during backward pass

Computation graph

Gradient

OL L dhy 0 Ohy

— — 2hax?
00, ~ Ohy 0f) Ohy 08, 4T

OVERFITTING AND GENERALIZATION

= Overfitting: ML model may too closely fit training data,
yielding large test errors

= ANNs have huge numbers of parameters(Jis this a problem?

ro
Often for very large models ® Training Error (€irain) I
the answer is no! ® Test Error (fiest) {14
II I ‘l
(“Double descent” behavior) it " Fol
= - ‘..""o ’ ' “o
[Jacot et al. “18; Lee et al. 2019] o B '*-.‘ teee, » l ,
= - L DO ! . Interpolation
[Schaffer et al. '24] 0.5 e ! w Threshold
"\- ! \.‘o
e : .y
‘.‘l- | .‘.‘.““““Mo-&o#u
Still need to be careful 0.0 L M o

|
: = 0
for moderate-size models! 0 10

Parameters/Data «,

THREE STRATEGIES FOR AVOIDING OVERFITTING

= autoML
— Divide ground-truth data into a training set and validation set
— Fit ML model using training set and measure loss on validation set
— If bad test results, modify model (more layers, smaller GD step-size, etc.) and try again

= Regularization
— Add term to loss function that penalizes for too many (or high-valued) parameters, e.g

'(0) =4(0) + 2., |0;| (Lasso regression)

= Drop-out: During each forward pass, independently set output
of each neuron to 0 with prob. p

— Equivalent to a form of regularization [Hinton et al. “12]

— Can use to roughly estimate uncertainty of a trained model
(reminiscent of bootstrap, but need, e.g. conformal prediction
to get true confidence intervals)

RECURRENT NEURAL NETWORKS: LSTM’S

= Recurrent neural networks (RNNs): Neuron output can feed back into network

= Ex: Long Short-Term Memory (LSTM) components

— Designed for learning from time-series data

— Not too many neurons [as in an MLP attempt with features x = (x4, ..., x;)]
— Can predict beyond training-sample path length
— Can capture long-range dependencies [Lipton ‘15]

P

Task-Specific MLP

Q

[— LSTM Layer

(a) LSTM

Task-Specific MLP

hi—1,¢i-1

Task-Specific MLP

D

LSTM Layer

4] hi,ci

hi,c;

Task-Specific MLP

LSTM Layer

(b) Unrolled LSTM

LSTM Layer

GENERATIVE NEURAL NETWORKS: VAE'S

= Goal of GNN: Learn underlying dist'n P(X) from i.i.d. samples of X then generate from P(X)

= Variational autoencoders (VAES)

)
S

— Generative model for observed data: x— E —(@,6)—z— D [— (A,

1. Sample from latent dist'n [N (0,1)]
2. Feed into function that generates data-generation dist'n
3. Sample from data-generation dist’'n

(a) Training

— Data-generation distribution [decoder D]: P(y|z) = N(/i(z),5(2))
— Latent-space mapping [Encoder E]: P(z|x) =~ Q(z|x) = N(ji(x), (x)) (b) Generation
— Loss function tries to ensure:
— N(ji(x),d(x)) samples together look like samples from N(0,1) (acts as a regularizer term)
— N(ji(z),5(z)) samples together look like samples from P(X)

GENERATIVE NEURAL NETWORKS: GAN'S

= Generative adversarial networks (GANS)
— Generator tries to generate data that looks like real data
— Discriminator tries to classify data as real (D (x; 8,) = 1) or generated (D (x; 6,) =0)
— Objective function represents misclassification by Discriminator (minimax game):

1 1
200) = 72)@ In(D(x; 6)) — EE In(1 = D(x6p))

— Optimal Generator minimizes Jensen-Shannon dist. between real & generated dist’'n

Heal
Discriminator

Random | _ Generated Sample / \
Fake

input data

= Original loss function was unstable
— Directly minimize Wasserstein distance (WGAN) [Arjovsky+ “17] Wy (uy, up) = [, |Fi(x) — F5(x)|dx

— Recent modifications of WGAN use Wasserstein variants [Mahdian+ ‘17, Birrell+ ‘22]
13

OUTLINE

= Background on ML and ANNSs
= ANNSs for simulation input modeling

= ANNSs for simulation metamodeling and optimization

= Other applications of ANNs to simulation
— Modeling of agent behavior
— Simulation validation
— Variance reduction

14

INPUT MODELING IS KEY TO SIMULATION

m Faithful input models help ensure credible results

m But hard!

— Distribution-fitting software fits many
distribution families on historical data and
recommends the best one based on GoF
metrics

— Current software fails for complex i.i.d.
distributions and stochastic processes

— Hand-crafted generation methods needed

m Good news: increasingly abundant data

— loT sensors, logs, annotated machine vision, ...

True Distribution Estimated Estimated
Distribution Goodness of Fit

i.i.d. beta beta Good

i.i.d. exp Gamma Good

i.i.d. Gaussian mixture | Johnson SU

i.i.d. Gamma-Uniform | Johnson SB

ARMA Johnson SU Good

NHPP Pearson Type VI | Good

Call center data Pearson Type VI

Results from ExpertFit

15

NIM: NEURAL INPUT MODELING

* NIM is a neural-network-based solution to input modeling that exploits abundant data
— Automatically fits complex stochastic processes
— Automatically, efficiently generates sample paths
— Avoids overfitting
— Can exploit prior knowledge (bounds, i.i.d. structure, multimodality)

= Architecture combines VAE and LSTM

= Motivation: Inversion method
—1fZ ~ N(0,1) then G(Z) = F~1(®(Z)) has distribution F
— Using conditional distributions, can specify ¢ that transforms 74, ..., Z; to X4, ..., X;
— Neural networks can learn complex functions like G from data

16

N | M-VL Parameters
With shifted for
Training data Internal Representation training data Generation
X ﬁ’: o Z 4 ﬁ': o
X1 | Encoder (1] [01] &l [21,0 Decoder 1] [01]
X2 ﬁz 02 Z2 22, X1 ﬁz 02
—_— E >) , . — _ — —_— D > ; _
| Xt | I_STM _ﬁt_ _6'1-_ | Zt | | 2ty Xt—1 | I_STM _ﬁf_ _a't_
Concat
Z
2 [z = D > fu,61 —> 1> » Use LSTM to capture long-
_______________________________ : range dependency
2z |
2 — % [z, 1] 5 iz, 6 Vo - — - « Use Conlcatenanon. for
sequential generation
Z; . .
2 [z —] D pebe Ve o> « Extends to multivariate

seqgquences
17

EXAMPLES: COMPLEX STOCHASTIC PROCESS

2.0 1
1.51

1.01

0.4 -
0.3 1

0.2 1

—— Ground Truth

Arrival Rate —— NIM-VL

Arrival Variance

SN

NIM can
extrapolate

Non-homogeneous Poisson Process

A(t) = %sin(%t) — %

Q-Q Plot: Dist’n of 60" Waiting Time

15.0 e}
12.5 -
10.0 - 9

7.5 1

NIM-VL

5.0 -

2.5 -

0.0 -

0 5 10 15
Ground Truth

Single-server FIFO Queue

NHPP arrivals, i.i.d. Gamma service times

18

EXPLOITING DOMAIN KNOWLEDGE

= |.i.d. structure: Replace LSTM with MLP
— Faster, and won'’t learn spurious autocorrelations

= Bounded random variables: Use transformations

— Apply nonlinear transformation to map each training x to real line

— Apply inverse transformation to NIM-generated output
= Multimodal distributions: Gaussian mixture decoder
- Discrete distributions: Softmax decoder P(v;) = e"i/}.;e"

= Nonstationary processes: ARIMA-like differencing

T

2.00

301 — NIM-VL
| —— Ground Truth

1751 N

, { | ,
i ' | M\ B ‘4} " £
[0} |)\ } ‘ l !ﬁ’& 4 f’ o _
15011 [/ 4 *@//!W =20 "
= | Lf W = ry
1| ¥ — Ground Truth 1.5 M —— NIM-VL 1.5
¥ NIM-VL 1.0- ﬁ%‘ 1 Ground Truth 1043

1.001,— . ; ; : : : . : :
0 50 100 0 25 50 75 100 0 25 50 75 100

NHPP: Damped sine wave NHPP: No differencing - - NHPP:- Differencing

1.251

0.0

o=
n

i.i.d. Gamma Uniform mixture

[1 Gound Truth
NIM
[| ExpertFit

Sample Value
0.6 * Gamma(2.875, 0.5) + 0.4 * Uniform(10,20)

19

EXPLOITING DOMAIN KNOWLEDGE: CONDITIONAL NIM

= Generate sample paths given global or local “condition” (aka context)
— E.qg., arrivals at ice cream stand given daily (global) or hourly (local) temperatures

X i, o Z Z i o
Ko T Lo g1l |01 Z1 2y 0G5 L 1] |61
X2, G, Lo fo| |02) 22, %1, G, L2 fo| |02

. — E — ... —]. | . — D — | .)
X1, G, -Lz_ fe| |0t [2t | |2t X¢-1, G, Lt‘ _ﬁt_ _5't_

(a) CNIM training architecture
Z

1
24— [y G L] — D b — Y-
|
|

N

Z2 —_:[zz’yl’g’ -LZ] — D —> ﬁZ:a—Z — Y2 ———»
|
|

| Zt .
I
20 e yer, G L] — D by Ys

(b) CNIM generation architecture

PERFORMANCE

* Training times
— On workstation with 2.10 GHz Intel CPU + NVIDIA GPU
— Training times between 10-20 minutes

= Generation times
— On a commodity 2018 MacBook Pro
— 1 million i.i.d. learned exponential random variables in 0.12 seconds
— 1,000 sequences of 1,000 learned NHPP interarrival times in 0.85 seconds
— Basically, matrix multiplications: Can be further improved using GPU

* Training-set size
— What is smallest training set size to get results comparable to 1,000 training sample paths?
— ARMA(3,3): 10 NHPP: 250 Gamma-uniform mixture: 1,000
— The simpler the distribution, the less training data is needed

21

OTHER INPUT MODELING TECHNIQUES

= Standard GANs for modeling i.i.d. univariate and bivariate standard distn’s [Montevechi+ 21]
= WWGANSs for modeling doubly stochastic Poisson processes [Zheng & Zheng 21]

= WGANSs + recursive model: X, .1 = u(ly, X)) + Z(l, Xi)Nk+1 [Zhut 23]

22

OUTLINE

= Background on ML and ANNSs
= ANNSs for simulation input modeling

= ANNs for simulation metamodeling and optimization

= Other applications of ANNs to simulation
— Modeling of agent behavior
— Simulation validation
— Variance reduction

23

SIMULATION METAMODELING

Why metamodeling?

= Stochastic simulation models of large and complex systems can be very expensive to run
— Limits use in tactical or near-real-time settings
— Severely limits use in simulation-based optimization for system design

= Use metamodeling: Create a statistical “model of the model” mapping inputs to outputs
— Fast to execute
— Approximates simulation output

= Ex: For M/M/1 queue (arrival rate 1), estimate E;[L,4]
— Run offline simulations at design points
— Fit quadratic regression function (or MLP)

— Can immediately estimate E;[L,] for new
values of 4 without needing to simulate

0 0.25 0.5 0.75 1.0 1.25 1.5
Arrival rate (A)

= “Fuzzy” response surface: Gaussian Process (GP) metamodeling 24

LIMITATIONS OF PRIOR METAMODELING METHODS

Prior methods ignore simulation structure

m Bottlenecks in queueing networks, critical paths in SANs

m So hard to study impacts of structural changes

Example: A traditional metamodel built for SAN1 can’t be used for SAN2
Can't just feed in adjacency matrix: Permutation-invariance problem [Marti 2019]

y = f(x0, X1, X2, X4, Xs5)

end

start

end

25

LIMITATIONS OF PRIOR METAMODELING METHODS

Prior methods only predict real-valued quantities, one per metamodel
— Original metamodel. mean of queue-length L, ,
— Now: 95" percentile of L,
— Now: mean of Lg 4

0 0.25 0.5 0.75 1.0 1.25 1.5
Arrival rate (A)

26

GRAPH NEURAL NETWORKS (WSC 2022)

= Treats graph structures as a metamodeling input — 11l

ol
— |1
i1
MO~
= Can easily study the impact of structural changes (I

= Can combine with generative neural network components
— Metamodel can output i.i.d. samples or time series

mO—

: _ Factory
— Multiple performance measures from a single metamodel
— Can provide Cls for point estimates Upstream
— Surrogate model can be embedded in larger model | ,0
— Digital twin applications Quewe L, A Soos
° A4
Downstream

27

GMM OVERVIEW

Simulation models

source activityl activity2 activity3 activity4 sink
o —0
resourcePool
4 anylogic
source activityl activity2 activity3 sink
> 70 gy 1O gy 70 g
resourcePool
4 anylogic
Extract
Y

resource

Annotated graphs

GMM
— » E[completion time]
T 5.94 min
Q — GGMM i.i.d. completion-
Z :_ > CVAE — time samples
Z] .
— Bl raining\ L
c ded \ D-GGMM otioni
ncode completion-time
i CVAE + LSTM| ——— sequence
representation

Node features -

Proc. time distn: Gamma

Dist'n params: 2.0, 3.5

Worker skill level: 5

* Node

Text

1. Extract annotated
graphs from simulations

2. Graph neural net
encodes graph into a
“meaningful” embedding

3. Basic GMM predicts a
numerical performance
measure

» Multi-layer perceptron (MLP)

4. Generative GMM
generates samples of
performance metrics or raw
outputs

« CVAE
« CVAE +LSTM
28

BASIC GMM ARCHITECTURE

Annotated Graph Message Passing Graph Embedding Regression Prediction
[

L (il

"//4” . *"J{/ | '

N l

-
LIT T T TTT
TN\
/& {
\
\

=
Q

GrNNs use “message-passing” architecture

MESSAGE PASSING

Message Passing

S i

start

MESSAGE PASSING

Message Passing

start

end

B =a(Wehi™D +Ws Y AYTY 4 by)
JEN ()

31

MESSAGE PASSING

Message Passing

Graph Embedding

start

hg =

> h

(L)

end

32

GGMM: COMBINING GMM AND CVAE

= GGMM: Generative GMM
— GMM + CVAE

— Use h; as a condition in CVAE

— QOutput = i.i.d. samples of performance measure

[y,hg] — E — (ﬁaé) — < [Z,hG] -

MLP (a) Training

[Z,hG] — D — (ﬁva-) —y

(b) Generation

0.10 1

o
o
®

Frequency

o
o
=

o
o
N

0.00

Completion-time Distribution

o
o
o

_f“]” [1 Simulation
15 LJL GGMM
II 14

0 10 20 30 40

MLP

33

D-GGMM

» Replace MLP components in CVAE by LSTM components

= D-GGMM: Outputs stochastic process sample paths

¥ pn.c z Z p.6
vi,he [(o 21 21,0, hc f o
v2,hg | (62 2 2,Y1,hc | (62

= E s = T [l = |
Vi, hg ik (of Zs Z,Yi—1,hG i 6;

Zi

L1 = > [Z],O,hg} - T D —— 1,61 — V| --—~

ZZ_> [szylth:I — ™ D _>a2762_>5)\2___>

| Zr

& — |z,5i-1,h6) —| D > 4,6 — Fr -~

34

EFFICIENT GMM TRAINING

* Goal: Reduce # of offline simulation runs Mt Koreangeiavroor rususisrs
Active Learning

» Traditional “active learning” approach in ML
— Sequentially choose systems to simulate
— Choose next system to maximally increase accuracy Busciiceiles
— Uncertainty sampling, version-space methods, etc. for SVM, Random Forest,...

= Active learning is problematic in neural network setting
— Expensive network re-training as each point is added S acns LEmNG
— Additional hyperparameters on top of ANN hyperparameters
— New points might not even be helpful under hyperparameter tuning
— Ex: 4-layer GMM selects x — train + tune hyperparams — becomes 5-layer GMM — x not useful

SYNTHESIS LECTURES ON ARTIFICIAL

= New H|L9 algorlth-m av0|.ds these deficiencies [fe (xl) — fe (xb)] + 9,
— Exploits simulation setting A K
— Specialized for neural networks Computed from difference Computed via many
network trained with CRN simulation replications

35

OUTLINE

= Background on ML and ANNSs
= ANNSs for simulation input modeling

= ANNs for simulation metamodeling and optimization

= Other applications of ANNs to simulation
— Modeling of agent behavior
— Simulation validation
— Variance reduction

36

HYBRID OPTIMIZATION WITH GMM'S

 GMM-based hybrid optimization
— GMMs naturally lead to under-explored class of hybrid optimization problems
— Optimize both graph structure (discrete) and model parameters (continuous)

 Example: Manufacturing process
— Process has precedence constraints: child can’t start until all parents complete (-> bottlenecks)
— Incurs costs proportional to process completion time Y (4, x)
— Can pay to speed up work rate or drop edges by buying parts externally

xeX ,A€(0,00)"

min C(\z) = E[Y(\)] + aZ(l —z;) + ﬁz Ai

= Challenges:
— Discrete space is often exponentially large

start

end

— Naive approach: experts provide promising

graph structures (bias, under-exploration)

37

HYBRID MONTE CARLO TREE SEARCH (WSC 2023)
= Heuristic but highly scalable

= Modified Monte Carlo Tree Search Viy = 20 Vi = fo
— For efficient exploration of discrete variables Vo= (10430 4 4)/3
— Root—to-leaf path = assignment of discrete variables Va; = 30 =14Vi7=)
— Reward for root-to-leaf path x is R(1",x) where 1" = argmax; R (A,X) (Xe=1)
— Reward at leaf guides search towards promising areas in tree
— Can incorporate R&S “cleanup phase” for statistical guarantees <
[Boesel et al. 2003] R(\, X) =4

x; = 0/1 indicator variable
= Gradient descent with automatic differentiation for leaf problems

— Repurpose built-in AutoDiff libraries used for neural network training

for ith edge

= Current work:
— Exact solution methods based on MILP formulation with specialized solver

— ANN-guided optimization (like GP-guided optimization but using “neural tangent kernel”)
38

B Proposed
. Gated
B Original

EXACT HYBRID OPTIMIZATION

= Limitations of H-MCTS
— No guarantee of truly optimal solution

= Exact solution methods

— Formulate as a mixed-integer linear program
(MILP) for exact solutions to smaller-scale problems

200 1000 5000

— Revamped GMM architecture to mimic superior Training Data Size
“sequence gated” network but having _ -
near-linear form (linear + ReLU) oy, atedtET.2T.X) st

. 0: : gn) _ .
— MILP constraints correspond to no ifz"=lelse0 Vie[l.N]
. 0) _ 0 .
GMM processing steps WO = Wial +b, Vie[L.N]

ali=nYVif Z\) =1else0 Wl ([1.L], Vi€ [1..N], Vj € [1..N]

= Customizing the MILP solver

N
L. ai”‘2=((1—a“))WzZaﬂﬁa“)hg”)) (1= B+ BOW;) Vi€ [1..L], Vie [1.N]
— Structure of MILP leads to slow solution time

j=1

for off-the-shelf solvers (Gurobi, CPLEX, etc.) B = max(a’*,0) VI€[L.L], Vi [1.N]
_ (L)
— Currently developing branch-and-bound method "‘G*;’“
using “affine arithmetic”, and parallelization 0! = Wihg + by

g1 = max(a(s), 0)
§=Wsg1+by
(2,29, X)eC; Vje[l.N].

39

OUTLINE

= Background on ML and ANNSs
= ANNSs for simulation input modeling

= ANNSs for simulation metamodeling and optimization

= Other applications of ANNs to simulation
— Modeling of agent behavior
— Simulation validation
— Variance reduction

40

MODELING OF AGENT BEHAVIOR

Agent during Experience Phase

@ A 8 v

br:‘ “1;';’ ‘j:t T’ - .
ut Decision
1 I

= Replace traditional rule set by MLP [Jaeger ‘19]

Experience

Agent during Application Phase

, - 43 W v
) Decision

» Generative agents [Park+ ‘23] TT:.;‘%::;.;
— Emergent social behaviours Teanll

— E.g., Valentine’s day party

SIMULATION VALIDATION

= Use GAN to validate simulation [Montevechi+ 22]

— Avoids rigid assumptions of usual statistical tests (normality, simple test statistics, etc.)
and can easily handle multiple validation features

— Train GAN on real-world data

— Feed real-world data into trained Discriminator and compute rate py of correct classifications
— Feed simulation data into Discriminator and compute rate ps of correct classifications

— Test if pp — ps is within user-specified tolerance (hypothesis test on diff. of proportions)

B
. Training Phase

b Evaluate Generator
| Start - Read .af‘d PIEDATE - Build GAN »| and Discriminator each
Training Data 50 epochs

. Testing Phase

| Equivalence Test for Compared data Read and prepare Training data |
. End the Diﬁerenqe of Two [judgmgn; by the - Compared Data judgrm;m by the .
| Proportions diseriminator discriminator |

42

VARIANCE REDUCTION

= |dea: Use ANN as a control variate [Lam+ ‘24]
= Goal: Estimate E[f(6,Y)] where Y is generated by simulation

» Prediction-enhanced Monte Carlo
1% N S
= (PO, - gO.X0) + 5) 9(0.%) = D (F©O,%) =€)
i=1 j=1 =1

— g Is a pre-trained ANN
— Pairs (X;,Y;) are coupled: X = ¢(Y) where X is a vector of features from sample path for Y
— The i.i.d. random variables X, ..., Xy are independent of (X;,Y;)

= HiLo metamodel training can also be viewed as a control-variate-like approach

43

MANY NEW OPPORTUNITIES FOR RESEARCH

= Use of explainable Al (XAl) techniques to provide insight
— E.g., SHAP feature-importance metric [Serré+ ‘22]

= Uncertainty quantification
— E.g., conformal prediction

= Use of LLMs to generate simulation code

MACHINE LEARNING & SIMULATION: FRIENDS!

Adobe Firefly

Machine Learning: Simulation:

= Mechanistic model of
system logic to produce
predictions

= Statistical model to
produce predictions

= Leverages large amount
of available data = Incorporates deep domain
expertise (logistics,
engineering, healthcare,

telecom, computer design,

)

Opportunities to achieve the best of both worlds!

ANNSs for

input modeling, metamodeling, simOpt, agent modeling, validation, variance reduction

45

ACKNOWLEDGEMENTS

= Cen Wang: Co-author on all of my own research

= Emily Herbert: Early contributions to NIM

= Justin Domke and Philippe Giabbanelli: Helpful discussions

 U.S. Army DEVCOM Analysis Center: Support under Contract #/V911QX-23-D-009/W911QX-23-F-0115

46

Backup Slides

Winter Simulation Conference
December 17, 2024

- st termm: L v e rgencs Dehhwasn €2 Cx XD — SNV CE. T mmnd ImC=3 — VOO
 EevmilLe s Eroduse By the oo cer Shoula ook like i ol Soarmpsles fromm Ao 1
Act=m mm om reguUimrESr, S RS EE S o CSarFi Tt T cimTa

1 vresres = A CfE. =D

- macanad o oo trosetie e lomm Tesge F= Coe] 20
- = Frcoualcd loacabe likies Lramirtirieg cl=ates

— T hies wamluae s vvres moarTigeles froarre £ C

= We train VAE by choosing 8 to minimize loss function (via SGD)

1 1 — [1)?
L(x;0) = —E(Iogﬁz—ﬁ2—52+1)+§ (Iog 21 +log 52 + (x Az,u))
o)
= First term: KL-divergence between Q(z |x) = N(ii,) and P(z) = N(0,1)
— z-values produced by the encoder should look like i.i.d. samples from N(0,1)

— Acts as a regularizer, and helps avoid overfitting to data

=« Second term: Reconstruction loss E,[—log P(x |z)] where z~N({i, 6%)
— The values we sample from P(x |z) should look like training data

REGRESSION

J = fo(ha)
L=(§-y)

The weights W’s and @ are
trained with standard
gradient descent (ADAM)

Graph Embedding Regression Prediction

/ !\ I N\ !\ \
I\ |\
r/’ / / | /\ \ R
17 \l/ \\U \\
X) :"’ /

Challenge: “"Oversquashing”

HILO OVERVIEW

* Modify GMM to predict differences in performance
measures

» Reallocate training and validation replications

— High-precision simulation of a few benchmark
(validation) systems: ¥, [leverage for prediction!]

— Low-precision simulation + common random numbers
to estimate differences for training systems

— Final estimate = [fp(x;) — fo(x,)] + 95

fo

Box width = # of replications for system
train

Traditional

HiLo

train

low

validation

validation

high

50

HILO, CONTINUED

* Preliminary empirical study
— Initial results: More effective than generic active learning methods for ML models

Method
Bl Traditional
e AL
B Hilo
200 1000
Training Size

51

HILO, CONTINUED

* Preliminary theoretical analysis
— Uses theory of infinite-width neural networks with Gaussian weight initialization [Jacot+ ‘18, YangL ‘21]

— Limiting GMM is a Gaussian process with neural tangent kernel (NTK)

K(X,X,) = lim|9|_>ooV9f9(x) . ngg(xl) a.s.

— Will help explain superior properties of HiLo compared to direct GMM metamodeling and GP
metamodeling

= Ongoing work:
— Extend to GMMSs with generative components
— Tune training/validation split

validation

Traditional

ramm val abon
o

52

HYBRID MCTS

= Traditional MCTS [Fu 2018]: commonly used in Al (AlphaGo)
— Builds search tree over possible discrete variables (actions)
— Real number at a terminal leaf is reward for choosing given path

= We replace real number by solution to a continuous optimization problem

= Four steps for H-MCTS:

— Selection: probabilisticall% select a leaf node not fully expanded
(via “Gumbel max trick” [Danihelka 2022])

— Expansion: add a valid child node to the leaf

— Optimization: randomly set the remaining discrete variables,
use gradient descent to optimize continuous variables at terminal

— Backpropagation: propagate the optimization result to the root, updating selection
probabilities in Step 1 (encourage exploration of promising regions)

= Stop when time limit reached

HYBRID MCTS EXAMPLE

- -

- P
= =

R\, X) = 20

HYBRID MCTS EXAMPLE

RO\, x) = 10

HYBRID MCTS EXAMPLE

——-—=

HYBRID MCTS EXAMPLE

V12 = 20
!

Vio,=(10+30+4)/3
= 14.67

e Ve =4
': X2=1 :l

RO\, X) = 4

OFFLINE GP-GUIDED HYBRID OPTIMIZATION

* Prior algorithms are “online” optimization
— Build metamodel offline
— Use it to make online predictions as new simulation models arrive

= Versus offline optimization: Classic one-shot system design

= ldea: Use a Gaussian process (GP) metamodel to guide search for solution
— Well-studied for non-hybrid problems (e.g., Hong and Zhang 2021 TutORial)
— When deciding on next system to simulate, use UCB criterion to trade off exploration and exploitation
— Need GP kernel K (x, x) to compute UCB
— Traditionally, use, e.g., radial basis function (RBF) kernel on continuous parameters
— We propose use of neural tangent kernel, which can handle (hybrid) annotated graphs

58

