
Tutorial: Artificial Neural Networks
for Discrete-event Simulation

Winter Simulation Conference

December 17, 2024

Peter J. Haas

Manning College of Information and Computer Sciences

University of Massachusetts Amherst

MACHINE LEARNING & SIMULATION: FRIENDS OR FOES?

2

Simulation:

▪ Mechanistic model of
system logic to produce
predictions and generate
data

▪ Incorporates deep domain
expertise (logistics,
engineering, healthcare,
telecom, computer design,
…)

Machine Learning:

▪ Statistical model to
produce predictions or
generate data

▪ Leverages large amount
of available data

Opportunities to achieve the best of both worlds!

▪ Simulation for ML: E.g., generate training data

▪ ML for simulation:

– “Classic” ML for simulation (random forests, SVMs, …)

– Causal probabilistic graphical models for simulation metamodeling

– Artificial Neural Networks (ANNs) for simulation: This tutorial

Adobe Firefly

OUTLINE

▪ Background on ML and ANNs

▪ ANNs for simulation input modeling

▪ ANNs for simulation metamodeling and optimization

▪ Other applications of ANNs to simulation

– Modeling of agent behavior

– Simulation validation

– Variance reduction

3

CAVEATS

▪ This is a tutorial, not a survey or literature review

– It strongly reflects my personal experience

▪ It is a snapshot from long ago (June 2024) referencing prehistoric times (2019-20)

– ANN technology has been developing VERY fast (1 human year = 50 ML years)

▪ I will not discuss foundation models (e.g., LLMs) very much

– Will focus on ANNs for stochastic processes (more modest data requirements)

4

OUTLINE

▪ Background on ML and ANNs

▪ ANNs for simulation input modeling

▪ ANNs for simulation metamodeling and optimization

▪ Other applications of ANNs to simulation

– Modeling of agent behavior

– Simulation validation

– Variance reduction

5

PREDICTIVE ML BASICS

▪ The simplest setup: Learn a function 𝑓 𝑥; 𝜃 :ℜ𝑑 → ℜ given training data 𝒯 = { 𝑥𝑖 , 𝑦𝑖 }

– Training points are i.i.d. samples from underlying joint probability distribution 𝑃 𝑋, 𝑌

– 𝑥𝑖 is called a feature vector

– 𝜃 is a vector of function parameters

▪ The function is trained (fit to data) by minimizing an (approximated) loss function ℓ(𝜃)

– E.g., ℓ 𝜃 = 𝐸𝑃[(𝑓 𝑋; 𝜃 − 𝑌)2] is approximated by |𝒯|−1σ𝑓 𝑥𝑖; 𝜃 − 𝑦𝑖)
2

– This procedure is called empirical risk minimization

▪ Example: Classical linear regression

– 𝑓 𝑥; 𝜃 = 𝜃0 + 𝜃1𝑥1 +⋯+ 𝜃𝑑𝑥𝑑
– Under mean-squared loss, 𝜃∗ = (𝐗t𝐗)−1𝐗t𝐲 where ith row of 𝐗 is (1, 𝑥𝑖,1, … , 𝑥𝑖,𝑑)

6

MULTI-LAYER PERCEPTRON (MLP): REGRESSION ON STEROIDS

▪ The simplest ANN

▪ Universal approximation theorems: MLP can approximate any continuous function

– With single, wide-enough hidden layer [Hornik ‘91]

– With enough fixed-width hidden layers (overall fewer neurons) [Hanin & Selke ‘17]

Weights and biases

7

AUTOMATIC DIFFERENTIATION
FOR TRAINING MLP

• Train via gradient descent to minimize loss

• Efficiently compute gradients via autodiff

• Advantages: fast & more accurate than

finite difference

• Out-of-box in PyTorch, TensorFlow, Jax

• Break functions into sequence of

elementary operations

• Matrix multiplications, nonlinear

functions, etc.

• Cache intermediate results in forward

pass that computes loss L

• Use chain rule to compute gradients

during backward pass

Weights Data

Model Loss

Computation graph

Gradient

8

OVERFITTING AND GENERALIZATION

▪ Overfitting: ML model may too closely fit training data,
yielding large test errors

▪ ANNs have huge numbers of parameters⏤is this a problem?

Often for very large models
the answer is no!

(“Double descent” behavior)

[Jacot et al. ‘18; Lee et al. 2019]

[Schaffer et al. ’24]

9

Still need to be careful
for moderate-size models!

THREE STRATEGIES FOR AVOIDING OVERFITTING

▪ autoML

– Divide ground-truth data into a training set and validation set

– Fit ML model using training set and measure loss on validation set

– If bad test results, modify model (more layers, smaller GD step-size, etc.) and try again

▪ Regularization

– Add term to loss function that penalizes for too many (or high-valued) parameters, e.g

ℓ′ 𝜃 = ℓ 𝜃 + σ𝑖 |𝜃𝑖| (Lasso regression)

▪ Drop-out: During each forward pass, independently set output
of each neuron to 0 with prob. p

– Equivalent to a form of regularization [Hinton et al. ‘12]

– Can use to roughly estimate uncertainty of a trained model
(reminiscent of bootstrap, but need, e.g. conformal prediction
to get true confidence intervals)

10

RECURRENT NEURAL NETWORKS: LSTM’S

▪ Recurrent neural networks (RNNs): Neuron output can feed back into network

▪ Ex: Long Short-Term Memory (LSTM) components

– Designed for learning from time-series data

– Not too many neurons [as in an MLP attempt with features 𝑥 = (𝑥1, … , 𝑥𝑡)]

– Can predict beyond training-sample path length

– Can capture long-range dependencies [Lipton ‘15]

11

GENERATIVE NEURAL NETWORKS: VAE’S

▪ Goal of GNN: Learn underlying dist’n 𝑃 𝑋 from i.i.d. samples of 𝑋 then generate from 𝑃 𝑋

▪ Variational autoencoders (VAEs)

– Generative model for observed data:

1. Sample from latent dist’n [𝑁(0,1)]

2. Feed into function that generates data-generation dist’n

3. Sample from data-generation dist’n

– Data-generation distribution [decoder D]: 𝑃 𝑦 𝑧 = 𝑁(Ƹ𝜇(𝑧), ො𝜎(𝑧))

– Latent-space mapping [Encoder E]: 𝑃(𝑧|𝑥) ≈ 𝑄 𝑧 𝑥 = N(෤𝜇 𝑥 , ෤𝜎(𝑥))

– Loss function tries to ensure:

– N(෤𝜇 𝑥 , ෤𝜎(𝑥)) samples together look like samples from 𝑁 0,1 (acts as a regularizer term)

– 𝑁(Ƹ𝜇(𝑧), ො𝜎(𝑧)) samples together look like samples from 𝑃 𝑋

12

GENERATIVE NEURAL NETWORKS: GAN’S

▪ Generative adversarial networks (GANs)

– Generator tries to generate data that looks like real data

– Discriminator tries to classify data as real (𝐷(𝑥; 𝜃𝐷) ≈ 1) or generated (𝐷(𝑥; 𝜃𝐷) ≈0)

– Objective function represents misclassification by Discriminator (minimax game):

ℓ 𝜃 = −
1

𝑛
෍

𝑥∈𝑅
ln 𝐷 𝑥; 𝜃𝐷 −

1

𝑛
෍

𝑥∈𝐺
ln(1 − 𝐷 𝑥; 𝜃𝐷)

– Optimal Generator minimizes Jensen-Shannon dist. between real & generated dist’n

▪ Original loss function was unstable

– Directly minimize Wasserstein distance (WGAN) [Arjovsky+ ‘17] 𝑊1 𝜇1, 𝜇2 = ℜ׬ |𝐹1(𝑥) − 𝐹2(𝑥)|𝑑𝑥

– Recent modifications of WGAN use Wasserstein variants [Mahdian+ ‘17, Birrell+ ‘22]
13

OUTLINE

▪ Background on ML and ANNs

▪ ANNs for simulation input modeling

▪ ANNs for simulation metamodeling and optimization

▪ Other applications of ANNs to simulation

– Modeling of agent behavior

– Simulation validation

– Variance reduction

14

INPUT MODELING IS KEY TO SIMULATION

■ Faithful input models help ensure credible results

■ But hard!

⎻ Distribution-fitting software fits many

distribution families on historical data and

recommends the best one based on GoF

metrics

⎻ Current software fails for complex i.i.d.

distributions and stochastic processes

⎻ Hand-crafted generation methods needed

■ Good news: increasingly abundant data

⎻ IoT sensors, logs, annotated machine vision, …

True Distribution Estimated

Distribution

Estimated

Goodness of Fit

i.i.d. beta beta Good

i.i.d. exp Gamma Good

i.i.d. Gaussian mixture Johnson SU Bad

i.i.d. Gamma-Uniform Johnson SB Bad

ARMA Johnson SU Good

NHPP Pearson Type VI Good

Call center data Pearson Type VI Bad

Results from ExpertFit

15

NIM: NEURAL INPUT MODELING

▪ NIM is a neural-network-based solution to input modeling that exploits abundant data

– Automatically fits complex stochastic processes

– Automatically, efficiently generates sample paths

– Avoids overfitting

– Can exploit prior knowledge (bounds, i.i.d. structure, multimodality)

▪ Architecture combines VAE and LSTM

▪ Motivation: Inversion method

– If 𝑍 ∼ 𝑁 0,1 then 𝐺 𝑍 = 𝐹−1(Φ 𝑍) has distribution 𝐹

– Using conditional distributions, can specify 𝐺 that transforms 𝑍1, … , 𝑍𝑡 to 𝑋1, … , 𝑋𝑡
– Neural networks can learn complex functions like 𝐺 from data

16

NIM-VL

Training data

Encoder Decoder

Internal Representation
With shifted

training data

Parameters

for

Generation

Training

Generation

LSTM

Concat

LSTM

• Use LSTM to capture long-

range dependency

• Use concatenation for

sequential generation

• Extends to multivariate

sequences
17

EXAMPLES: COMPLEX STOCHASTIC PROCESS

Non-homogeneous Poisson Process

NIM can

extrapolate

Single-server FIFO Queue

NHPP arrivals, i.i.d. Gamma service times

18

EXPLOITING DOMAIN KNOWLEDGE

▪ I.i.d. structure: Replace LSTM with MLP

– Faster, and won’t learn spurious autocorrelations

▪ Bounded random variables: Use transformations

– Apply nonlinear transformation to map each training x to real line

– Apply inverse transformation to NIM-generated output

▪ Multimodal distributions: Gaussian mixture decoder

▪ Discrete distributions: Softmax decoder 𝑃 𝑣𝑖 = 𝑒𝑣𝑖/σ𝑗 𝑒
𝑣𝑗

▪ Nonstationary processes: ARIMA-like differencing

NHPP: No differencing NHPP: Differencing NHPP: Damped sine wave

19

EXPLOITING DOMAIN KNOWLEDGE: CONDITIONAL NIM

▪ Generate sample paths given global or local “condition” (aka context)

– E.g., arrivals at ice cream stand given daily (global) or hourly (local) temperatures

20

PERFORMANCE

▪ Training times

– On workstation with 2.10 GHz Intel CPU + NVIDIA GPU

– Training times between 10-20 minutes

▪ Generation times

– On a commodity 2018 MacBook Pro

– 1 million i.i.d. learned exponential random variables in 0.12 seconds

– 1,000 sequences of 1,000 learned NHPP interarrival times in 0.85 seconds

– Basically, matrix multiplications: Can be further improved using GPU

▪ Training-set size

– What is smallest training set size to get results comparable to 1,000 training sample paths?

– ARMA(3,3): 10 NHPP: 250 Gamma-uniform mixture: 1,000

– The simpler the distribution, the less training data is needed

21

OTHER INPUT MODELING TECHNIQUES

▪ Standard GANs for modeling i.i.d. univariate and bivariate standard distn’s [Montevechi+ ‘21]

▪ WGANs for modeling doubly stochastic Poisson processes [Zheng & Zheng ‘21]

▪ WGANs + recursive model: 𝑋𝑘+1 = 𝜇 𝑙𝑘 , 𝑋𝑘 + Σ(𝑙𝑘 , 𝑋𝑘)𝜂𝑘+1 [Zhu+ ‘23]

22

OUTLINE

▪ Background on ML and ANNs

▪ ANNs for simulation input modeling

▪ ANNs for simulation metamodeling and optimization

▪ Other applications of ANNs to simulation

– Modeling of agent behavior

– Simulation validation

– Variance reduction

23

SIMULATION METAMODELING

Why metamodeling?

▪ Stochastic simulation models of large and complex systems can be very expensive to run

– Limits use in tactical or near-real-time settings

– Severely limits use in simulation-based optimization for system design

▪ Use metamodeling: Create a statistical “model of the model” mapping inputs to outputs

– Fast to execute

– Approximates simulation output

▪ Ex: For M/M/1 queue (arrival rate 𝜆), estimate E𝜆[𝐿4.0]

– Run offline simulations at design points

– Fit quadratic regression function (or MLP)

– Can immediately estimate E𝜆[𝐿4.0] for new
values of 𝜆 without needing to simulate

▪ “Fuzzy” response surface: Gaussian Process (GP) metamodeling 24

LIMITATIONS OF PRIOR METAMODELING METHODS

Prior methods ignore simulation structure

■ Bottlenecks in queueing networks, critical paths in SANs

■ So hard to study impacts of structural changes

⎼ Example: A traditional metamodel built for SAN1 can’t be used for SAN2

⎼ Can’t just feed in adjacency matrix: Permutation-invariance problem [Marti 2019]

25

𝑦 = 𝑓(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)𝑦 = 𝑓(𝑥0, 𝑥1, 𝑥2, 𝑥4, 𝑥5)

LIMITATIONS OF PRIOR METAMODELING METHODS

Prior methods only predict real-valued quantities, one per metamodel

⎼ Original metamodel: mean of queue-length 𝐿4.0
⎼ Now: 95th percentile of 𝐿4.0
⎼ Now: mean of 𝐿8.0

26

GRAPH NEURAL NETWORKS (WSC 2022)

27

▪ Treats graph structures as a metamodeling input

▪ Can easily study the impact of structural changes

▪ Can combine with generative neural network components

– Metamodel can output i.i.d. samples or time series

– Multiple performance measures from a single metamodel

– Can provide CIs for point estimates

– Surrogate model can be embedded in larger model

– Digital twin applications

GMM OVERVIEW

2. Graph neural net

encodes graph into a

“meaningful” embedding

3. Basic GMM predicts a

numerical performance

measure

• Multi-layer perceptron (MLP)

E[completion time]

i.i.d. completion-

time samples

completion-time

sequence

1. Extract annotated

graphs from simulations

28

4. Generative GMM

generates samples of

performance metrics or raw

outputs

• CVAE

• CVAE + LSTM

Text

BASIC GMM ARCHITECTURE

Annotated Graph Message Passing Graph Embedding PredictionRegression

ො𝑦

ℎ𝐺

GrNNs use “message-passing” architecture

29

MESSAGE PASSING

Message Passing

30

MESSAGE PASSING

Message Passing

31

MESSAGE PASSING

Message Passing

Graph Embedding

32

GGMM: COMBINING GMM AND CVAE

▪ GGMM: Generative GMM

– GMM + CVAE

– Use ℎ𝐺 as a condition in CVAE

– Output = i.i.d. samples of performance measure

MLP MLP

Completion-time Distribution

33

D-GGMM

▪ Replace MLP components in CVAE by LSTM components

▪ D-GGMM: Outputs stochastic process sample paths

34

EFFICIENT GMM TRAINING

▪ Goal: Reduce # of offline simulation runs

▪ Traditional “active learning” approach in ML

– Sequentially choose systems to simulate

– Choose next system to maximally increase accuracy

– Uncertainty sampling, version-space methods, etc. for SVM, Random Forest,…

▪ Active learning is problematic in neural network setting

– Expensive network re-training as each point is added

– Additional hyperparameters on top of ANN hyperparameters

– New points might not even be helpful under hyperparameter tuning

– Ex: 4-layer GMM selects x → train + tune hyperparams → becomes 5-layer GMM → x not useful

▪ New HiLo algorithm avoids these deficiencies

– Exploits simulation setting

– Specialized for neural networks

35

𝑓𝜃(𝑥𝑖) − 𝑓𝜃(𝑥𝑏) + ො𝑦𝑏

Computed from difference
network trained with CRN

Computed via many
simulation replications

OUTLINE

▪ Background on ML and ANNs

▪ ANNs for simulation input modeling

▪ ANNs for simulation metamodeling and optimization

▪ Other applications of ANNs to simulation

– Modeling of agent behavior

– Simulation validation

– Variance reduction

36

HYBRID OPTIMIZATION WITH GMM’S

▪ GMM-based hybrid optimization

– GMMs naturally lead to under-explored class of hybrid optimization problems

– Optimize both graph structure (discrete) and model parameters (continuous)

▪ Example: Manufacturing process

– Process has precedence constraints: child can’t start until all parents complete (-> bottlenecks)

– Incurs costs proportional to process completion time 𝑌(𝜆, 𝑥)

– Can pay to speed up work rate or drop edges by buying parts externally

▪ Challenges:

– Discrete space is often exponentially large

– Naïve approach: experts provide promising
graph structures (bias, under-exploration)

37

HYBRID MONTE CARLO TREE SEARCH (WSC 2023)

▪ Heuristic but highly scalable

▪ Modified Monte Carlo Tree Search

– For efficient exploration of discrete variables

– Root–to-leaf path = assignment of discrete variables

– Reward for root-to-leaf path x is 𝑅(𝜆∗,x) where 𝜆∗ = argmax𝜆𝑅(λ,x)

– Reward at leaf guides search towards promising areas in tree

– Can incorporate R&S “cleanup phase” for statistical guarantees
[Boesel et al. 2003]

▪ Gradient descent with automatic differentiation for leaf problems

– Repurpose built-in AutoDiff libraries used for neural network training

▪ Current work:

– Exact solution methods based on MILP formulation with specialized solver

– ANN-guided optimization (like GP-guided optimization but using “neural tangent kernel”)
38

𝑥𝑖 = 0/1 indicator variable

for ith edge

EXACT HYBRID OPTIMIZATION

▪ Limitations of H-MCTS

– No guarantee of truly optimal solution

▪ Exact solution methods

– Formulate as a mixed-integer linear program
(MILP) for exact solutions to smaller-scale problems

– Revamped GMM architecture to mimic superior
“sequence gated” network but having
near-linear form (linear + ReLU)

– MILP constraints correspond to
GMM processing steps

▪ Customizing the MILP solver

– Structure of MILP leads to slow solution time
for off-the-shelf solvers (Gurobi, CPLEX, etc.)

– Currently developing branch-and-bound method
using “affine arithmetic”, and parallelization

39

OUTLINE

▪ Background on ML and ANNs

▪ ANNs for simulation input modeling

▪ ANNs for simulation metamodeling and optimization

▪ Other applications of ANNs to simulation

– Modeling of agent behavior

– Simulation validation

– Variance reduction

40

MODELING OF AGENT BEHAVIOR

▪ Replace traditional rule set by MLP [Jaeger ‘19]

▪ Generative agents [Park+ ‘23]

– Emergent social behaviours

– E.g., Valentine’s day party

41

SIMULATION VALIDATION

▪ Use GAN to validate simulation [Montevechi+ ‘22]

– Avoids rigid assumptions of usual statistical tests (normality, simple test statistics, etc.)
and can easily handle multiple validation features

– Train GAN on real-world data

– Feed real-world data into trained Discriminator and compute rate 𝑝𝑅 of correct classifications

– Feed simulation data into Discriminator and compute rate 𝑝𝑆 of correct classifications

– Test if 𝑝𝑅 − 𝑝𝑆 is within user-specified tolerance (hypothesis test on diff. of proportions)

42

VARIANCE REDUCTION

▪ Idea: Use ANN as a control variate [Lam+ ‘24]

▪ Goal: Estimate E[𝑓 𝜃, 𝑌] where 𝑌 is generated by simulation

▪ Prediction-enhanced Monte Carlo

1

𝑛
෍

𝑖=1

𝑛

(𝑓 𝜃, 𝑌𝑖 − 𝑔(𝜃, 𝑋𝑖)) +
1

𝑁
෍

𝑗=1

𝑁

𝑔 𝜃, ෨𝑋𝑗 =෍

𝑖=1

𝑛

(𝑓 𝜃, 𝑌𝑖 − 𝐶𝑖)

– 𝑔 is a pre-trained ANN

– Pairs (𝑋𝑖 , 𝑌𝑖) are coupled: 𝑋 = 𝜙(𝑌) where 𝑋 is a vector of features from sample path for 𝑌

– The i.i.d. random variables ෨𝑋1, … , ෨𝑋𝑁 are independent of (𝑋𝑖 , 𝑌𝑖)

▪ HiLo metamodel training can also be viewed as a control-variate-like approach

43

MANY NEW OPPORTUNITIES FOR RESEARCH

▪ Use of explainable AI (XAI) techniques to provide insight

– E.g., SHAP feature-importance metric [Serré+ ‘22]

▪ Uncertainty quantification

– E.g., conformal prediction

▪ Use of LLMs to generate simulation code

▪ …

MACHINE LEARNING & SIMULATION: FRIENDS!

45

Simulation:

▪ Mechanistic model of
system logic to produce
predictions

▪ Incorporates deep domain
expertise (logistics,
engineering, healthcare,
telecom, computer design,
…)

Machine Learning:

▪ Statistical model to
produce predictions

▪ Leverages large amount
of available data

Opportunities to achieve the best of both worlds!

ANNs for

input modeling, metamodeling, simOpt, agent modeling, validation, variance reduction

Adobe Firefly

ACKNOWLEDGEMENTS

▪ Cen Wang: Co-author on all of my own research

▪ Emily Herbert: Early contributions to NIM

▪ Justin Domke and Philippe Giabbanelli: Helpful discussions

▪ U.S. Army DEVCOM Analysis Center: Support under Contract #W911QX-23-D-009/W911QX-23-F-0115

46

Backup Slides

Winter Simulation Conference

December 17, 2024

VAE TRAINING

◼ We train VAE by choosing 𝜃 to minimize loss function (via SGD)

▪ First term: KL-divergence between 𝑄 𝑧 𝑥) = 𝑁(෤𝜇, ෤𝜎2) and P z = 𝑁(0,1)

– 𝑧-values produced by the encoder should look like i.i.d. samples from N(0,1)

– Acts as a regularizer, and helps avoid overfitting to data

▪ Second term: Reconstruction loss 𝐸𝑧[−log 𝑃 𝑥 𝑧)] where 𝑧~𝑁(ො𝜇, ො𝜎2)

– The values we sample from 𝑃 𝑥 𝑧) should look like training data

REGRESSION

Graph Embedding PredictionRegression

Y

The weights W’s and are

trained with standard

gradient descent (ADAM)

Challenge: “Oversquashing”

HILO OVERVIEW

▪ Modify GMM to predict differences in performance
measures

▪ Reallocate training and validation replications

– High-precision simulation of a few benchmark
(validation) systems: ො𝑦𝑏 [leverage for prediction!]

– Low-precision simulation + common random numbers
to estimate differences for training systems

– Final estimate = 𝑓𝜃(𝑥𝑖) − 𝑓𝜃(𝑥𝑏) + ො𝑦𝑏

50

Box width = # of replications for system

HILO, CONTINUED

▪ Preliminary empirical study

– Initial results: More effective than generic active learning methods for ML models

51

HILO, CONTINUED

▪ Preliminary theoretical analysis

– Uses theory of infinite-width neural networks with Gaussian weight initialization [Jacot+ ‘18, YangL ‘21]

– Limiting GMM is a Gaussian process with neural tangent kernel (NTK)

𝐾 𝑥, 𝑥′ = lim|𝜃|→∞∇𝜃𝑓𝜃(𝑥) ∙ ∇𝜃𝑓𝜃(𝑥′) a.s.

– Will help explain superior properties of HiLo compared to direct GMM metamodeling and GP
metamodeling

▪ Ongoing work:

– Extend to GMMs with generative components

– Tune training/validation split

52

HYBRID MCTS

▪ Traditional MCTS [Fu 2018]: commonly used in AI (AlphaGo)
– Builds search tree over possible discrete variables (actions)
– Real number at a terminal leaf is reward for choosing given path

▪ We replace real number by solution to a continuous optimization problem

▪ Four steps for H-MCTS:

– Selection: probabilistically select a leaf node not fully expanded
(via “Gumbel max trick” [Danihelka 2022])

– Expansion: add a valid child node to the leaf

– Optimization: randomly set the remaining discrete variables,
use gradient descent to optimize continuous variables at terminal

– Backpropagation: propagate the optimization result to the root, updating selection
probabilities in Step 1 (encourage exploration of promising regions)

▪ Stop when time limit reached

HYBRID MCTS EXAMPLE

HYBRID MCTS EXAMPLE

HYBRID MCTS EXAMPLE

HYBRID MCTS EXAMPLE

OFFLINE GP-GUIDED HYBRID OPTIMIZATION

▪ Prior algorithms are “online” optimization

– Build metamodel offline

– Use it to make online predictions as new simulation models arrive

▪ Versus offline optimization: Classic one-shot system design

▪ Idea: Use a Gaussian process (GP) metamodel to guide search for solution

– Well-studied for non-hybrid problems (e.g., Hong and Zhang 2021 TutORial)

– When deciding on next system to simulate, use UCB criterion to trade off exploration and exploitation

– Need GP kernel 𝐾 𝑥, 𝑥 to compute UCB

– Traditionally, use, e.g., radial basis function (RBF) kernel on continuous parameters

– We propose use of neural tangent kernel, which can handle (hybrid) annotated graphs

58

